Charcoal, a nonpolar sorbent, had been widely used for the separation of peptides1 before the advent of ion-exchange chromatography. Recent developments in high performance liquid chromatography revived the interest in the use of nonpolar stationary phases for the separation of biological substances by “reversed phase” chromatography, which employs columns packed with 5 or 10µm porous silica particles having hydrocarbonaceous functions covalently bound to the surface.
This report illustrates the potential of this type of chromatography for the rapid analysis of minute quantities of peptide mixtures. The results suggest that octadecyl-silica columns can be used for fast separation of a wide variety of peptides. By monitoring the column effluent with a UV-detector at 200 nm, the sample components can be analyzed at the subnanomole level without the formation of UV absorbing or fluorescent derivatives.