This study describes the development of liquid chromatographic methods for the simultaneous separation of some of the most popular local anesthetics in pharmaceutical preparations and medical praxis (benzocaine, bupivacaine, chloroprocaine lidocaine, oxybuprocaine, prilocaine, procaine, propipocaine and tetracaine) based on a systematic approach using experimental design methodology in which one or more factors are changed at the same time. The strategy employs a chromatography modeling software for the simultaneous optimization of critical chromatographic parameters, which are gradient time tG, temperature T and the ternary composition of the organic eluent B.
DryLab is one of the most established software for chromatography modeling, which allows for modeling of chromatographic separations based on input data from two or more experimental runs. The use of DryLab for HPLC modeling to facilitate methods development was well documented in the last 27 years. In this time a continuous development occurred to the software which enabled it to cope more with the ongoing technological progress. On the other hand, a number of published studies exist that deal with the use of DryLab in different chromatographic modes and wide application ranges. DryLab is applied to solve different analytical problems in pharmaceutical analysis, which deal mostly with the separation of active pharmaceutical ingredients (APIs) in the presence of their impurities and/or their degradation products. In the field of phytochemical analysis many applications on complex plant extracts are also available. Moreover, DryLab has been successfully applied to optimize the separation of different groups of environmental pollutants, peptides and proteins and metabolites.