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a b s t r a c t

Bisphenol A diglycidyl ether (BADGE) is used as a rawmaterial for the production of epoxy resins and PVC
organosols, which are commonly applied as inner coatings for food cans. BADGE and its derivatives can
migrate from coatings to foodstuffs during processing and storage thereby creating adverse health issues.
In this work, a method based on high-performance liquid chromatography (HPLC)-fluorescence detection
(FLD) method was developed for the rapid determination of BADGE and its five derivatives in canned
foods. Modeling software DryLab� was applied for the optimization of separation conditions. An adequate
separation was achieved in 5 min including equilibration time, using a core–shell particle column; such
application has not been reported so far. Also, the results showed that LOD varied from 0.01 to 0.20 ng/g,
while LOQ varied from 0.03 to 0.66 ng/g, and RSD was found to be <8.64%. The analytical recoveries ran-
ged from 70.46 to 103.44%. Excellent validation data revealed that this method is suitable for the inves-
tigation of can coating-to-food migration of BADGE and its derivatives. The HPLC-FLD method is rapid,
inexpensive and highly efficient, which could be applicable for safety inspection of food contact materials
involving BADGE and its derivatives.

� 2019 Elsevier B.V. All rights reserved.
1. Introduction

Bisphenol A diglycidyl ether (BADGE) is the most widely used
raw material for the production of epoxy resins and PVC organo-
sols. It is commonly applied as inner coatings for food cans to pre-
vent metal corrosion and protect foodstuffs frommetal (Grob et al.,
2010; Szczepańska et al., 2018). However, during processing and
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storage of canned foods, BADGE and its hydrolysis and hydrochlo-
rination derivatives have been proved migratable from can coat-
ings to foodstuff (Fattore et al., 2015; Noureddine El Moussawi
et al., 2019; Xie et al., 2015).

The toxicology of BADGE and its related products are yet to be
thoroughly investigated, but they have been demonstrated to cre-
ate potential adverse health issues due to their genotoxic, muta-
genic and endocrine disrupting properties (Marqueno et al.,
2019; Szczepańska et al., 2019; Wang et al., 2015). Consequently,
specific migration limits (SMLs) of food contact material have been
established by the European Union (the Commission of the
European Communities, 2005). The SMLs for BADGE, BADGE�H2O
and BADGE�2H2O were set at 9 � 103 ng/g in food or food simu-
lants, while the SMLs for BADGE�HCl, BADGE�2HCl and BADGE�H2-
OHCl were set at 103 ng/g, respectively. Therefore, this makes it
necessary to develop protocols for analyzing BADGE and its deriva-
tives in foods.

Methods for determination and quantification of BADGE and its
derivatives have been well documented (Asimakopoulos et al.,
2014; El-Kosasy et al., 2018a; Miguez et al., 2012). Ultra-
performance liquid chromatography (UPLC) is one of the most fre-
quently applied methods for the determination of these com-
pounds (Cheng et al., 2017; Zhang et al., 2017; Zou et al., 2012).
Liquid chromatography coupled with tandem mass spectrometry
(LC-MS/MS) (Chang et al., 2014; Gallart-Ayala et al., 2011) or fluo-
rescence detection (FLD) was also employed (Alabi et al., 2014;
Fischnaller et al., 2016; Xiong et al., 2018). Though UPLC-MS detec-
tor has gained reliability and accuracy advantages over other
methods, it has some disadvantages as well: expensive equipment
and maintenance in addition to complicated sample preparation.
Comparatively, the equivalent chromatographic performance, con-
venience, and low cost of HPLC-FLD have tremendously increased
its potential as a multi-residue method (Gallart-Ayala et al.,
2010). On the other hand, HPLC coupled with diode array detector
(DAD) was applied to a lesser extent (El-Kosasy et al., 2018a; El-
Kosasy et al., 2018b). To the best of our knowledge, analysis of
BADGE and its derivatives by HPLC-UV has been rarely discussed
in previous studies. We could only refer to one study by
Poustková et al. (2004) regarding the analysis of BADGE and its
derivatives using HPLC-UV. Thus far, no rapid (<20 min) HPLC-
FLD method for analyzing BADGE and its derivatives was reported.
Based on convenient preparation, cost, and availability of HPLC
instrumentation, it is vital to develop a high-throughput HPLC
method to detect these compounds in complex food matrices.

Superficially porous particles, also called core–shell particles,
are composed of a solid core surrounded by a thin porous shell.
Compared to traditional totally porous particles, such as sub-
2 mm particles, core–shell particle columns are characterized by
smaller van Deemter coefficients, higher speed, and higher effi-
ciency, but the back pressure per unit column length drops to
approximately a half (Brhane et al., 2019; Horvath et al., 2019;
Qamar et al., 2019).

Considerable technical skills and labour are always demanded
in a trial-and-error approach for the development of HPLC meth-
ods. From the simplicity standpoint, DryLab� simulation software
is used to generate retention models and predict a broad range of
operating conditions, based on experimental data from a small,
well-defined set of experiments. Moreover, identification of opti-
mum separation conditions and evaluation of parameters, namely
gradient time, column temperature and mobile phase composition
can efficiently be facilitated by the software (Ródenas-Montano
et al., 2013; Sun et al., 2015). As far as we know, DryLab� software
has never been applied for developing an optimum analytical
method of BADGE and its derivatives.

Due to the trace amount of BADGE and its derivatives in com-
plex food matrices, matrix impurities would likely interfere. It is
crucial to use spike-recovery approach in method development.
The objective of this study was to develop a rapid HPLC-FLD
method for the simultaneous determination of BADGE and its
derivatives in canned foods using a modern core–shell particle col-
umn, while the experimental conditions were optimized with the
aid of Drylab� software.
2. Methods and materials

2.1. Reagents

Standards of BADGE, BADGE�H2O, BADGE�2H2O, BADGE�HCl,
BADGE�2HCl and BADGE�H2OHCl were purchased from Fluka
(Reinach, Switzerland). Acetonitrile (HPLC grade) was purchased
from Tedia (Fairfield, Ohio, USA). Hexane and other chemicals were
obtained from Sinopharm Chemical Reagent (Shanghai, China).

2.2. Equipment and final chromatographic conditions

HPLC was performed on a Waters 2695 module (Milford, MA,
USA) coupled to a Waters 2475 fluorescence detector (FLD). A
Poroshell 120 SB-C18 column (100 mm � 4.6 mm, i.d. � 2.7 lm)
from Agilent (La Jolla, CA, USA) was used. The mobile phase was
comprised of water (eluant A) and acetonitrile (eluant B) at
1.5 mL/min with the following program: 0–3 min, 50–72.5% B;
3–4 min, 72.5–100% B; 4–5 min, 100–50% B. The injection volume
was 10 lL, and the column temperature was 30 �C. The fluores-
cence excitation and emission wavelengths were set at 275 and
305 nm, respectively.

2.3. Sample preparation

Homogenized tuna (2 g) was extracted with 10 mL of hexane for
30 min under ultrasound agitation. The extract was centrifuged at
8021 g for 10 min; the supernatant was then washed twice with
5 mL of acetonitrile. The acetonitrile extracts were evaporated to
dryness at 40 �C under nitrogen. The residue was reconstituted
in 1.8 mL of acetonitrile, and the resulting solution was spiked with
0.2 mL standard mixture solution (1 lg/mL BADGE, BADGE�H2O,
BADGE�2H2O, BADGE�HCl, BADGE�2HCl and BADGE�H2OHCl in ace-
tonitrile) at 100 ng/mL each. Spiked samples were filtered through
0.45 lm syringe filters before HPLC analysis.

2.4. Optimization of separation condition using DryLab�

To optimize separation conditions using DryLab� (Molnár Insti-
tute, Berlin, Germany), spiked samples prepared in section 2.3
were used. The following four calibration experiments were car-
ried out (two gradient time: tG1 = 20 min and tG2 = 60 min, and
two-column temperatures: T1 = 25 �C and T2 = 55 �C for each).

Because of the extremely low concentrations of BADGE and its
derivatives in canned foods and potential matrix interference, the
impurity peaks with adequate signal-to-noise ratio (S/N) and close
retention time to analyte compounds in food matrix also served as
target peaks and included in the modeling. Specifically, a total of
12 target peaks were determined, including 6 analyte peaks and
6 impurity peaks. Peak area and retention time were used to track
each peak under different chromatographic conditions, as
described in our previous report (Zhong et al., 2018). The following
experimental data from the four experimental runs were entered
into the Drylab�: column dimensions (100 mm � 4.6 mm), particle
size (2.7 lm), flow rate (1 mL/min), mobile phase composition (A:
water, B: acetonitrile), linear gradient range (10–100% ACN). The
retention time and peak area of the 12 target peaks in the four
initial experiments were also used as input parameters for opti-
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Fig. 1. Resolution map under varied temperature and gradient time.
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mization. Hence, a resolution map and chromatograms were
predicted.

2.5. Further optimization

2.5.1. Flow rate
The mobile phase flow rate is a crucial LC parameter. An

increase in flow rate shortens run time, but elevates system pres-
sure and decreases resolution and S/N. The elution volume, in a
gradient elution system, was required to be constant during flow
rate optimization, hence the flow rate was elevated to 1.5 mL/
min with gradient program adjusted to 0–6.67 min: 50–100% B.

2.5.2. Gradient procedure
Accelerating the increase of the organic phase in the latter stage

of the gradient program was implemented, resulting in rapid elu-
tion of difficult-to-elute impurities and shortened analytical time.
The gradient procedure was adjusted as 0–3 min, 50–72.5% B;
and 3–4 min, 72.5–100% B.

2.5.3. Equilibrium time
From the throughput point of view, the equilibrium time

between consecutive injections should be as short as possible. Usu-
ally, the initial volume of the mobile phase is 5 to 10 times higher
than that of the column, which is used to equilibrate the column
thoroughly. However, the actual equilibrium volume can be much
smaller. The equilibrium time between successive injections would
significantly influence the repeatability of the retention time. Con-
sequently, a study was performed on this parameter (0, 1, 2, 5, and
10 min). For each, the injection was repeated 6 times.

2.5.4. Acquisition rates and injection volume
The influence of the detector acquisition rate (1, 2, and 5 Hz)

and injection volume (2, 5 and 10 lL) on the chromatogram was
investigated.

2.6. Method validation

2.6.1. Calibration curves and linearity
Calibration curves were set up by plotting peak area versus con-

centration in the range 10–10000 ng/mL. Standard solutions, 10,
25, 100, 250, 1000, 2500 and 10000 ng/mL of the six analytes with
duplicate injections, were evaluated for linearity.

2.6.2. Limit of detection and quantitation
LODs and LOQs were calculated based on 3r and 10r,

respectively.

2.6.3. Method accuracy and precision
Fortified tuna samples at each concentration level were

extracted and analyzed. Accuracy and precision were obtained
from six analytes at three different concentrations (25, 100,
400 ng/g). The accuracy of the method was evaluated based on
recoveries.

3. Results and discussion

3.1. Method optimization using DryLab�

Based on previous results (data not shown), Drylab� software
was applied to predict the separation performance with different
gradient program and column temperatures. Peak matching was
conducted to identify individual peaks in the chromatogram.
Impurity peaks with close retention times were picked for opti-
mization. Retention time and resolution under different combina-
tions of gradient program and temperature were predicted. A
resolution map, of which color code represents the critical resolu-
tion (Rs) values, was thereby generated (see Fig. 1). The critical res-
olution, total analytical time and simplicity of the experimental
procedure should be considered concurrently in setting an opti-
mum separation condition.

Despite better resolution at lower column temperatures, the
column oven can only be heated but cannot be cooled down. Hence
setting the oven temperature at 30 �C is convenient for practical
application. Meanwhile, 10 min of gradient time was selected
based on critical resolution (Rs > 1.5 criterion) and analysis time.

Further optimization can be carried out by altering the initial
ACN concentration without additional experiments. As shown in
Fig. 2, the first peak eluted late, so the initial mobile phase compo-
sition was adjusted, followed by modeling the separation perfor-
mance with DryLab�. Finally, the initial organic phase was
elevated to 50% to cut the total elution time. The software gener-
ated optimal separation conditions were 50–100% ACN gradients
in 10 min at the column temperature of 30 �C; other parameters
were identical to those described in Section 2.4.

The predicted and experimental chromatograms of the spiked
sample under the optimized conditions were shown in Fig. 2A
and B, respectively. The peaks marked a-f were target peaks, and
the ones marked 1–6 were impurity peaks. Adequate separation
between each target-impurity pair was achieved with excellent
resolution. Meanwhile, the total elution time was 6.67 min for both
experimental and predicted results. The retention times of each
peak for the predicted and experimental chromatograms obtained
under optimized conditions were also compared in Table 1. The
resulting chromatograms showed satisfactory agreement with
computer-predicted results, with retention margin <0.26 min.

3.2. Further optimization

The flow rate of the mobile phase is crucial in LC. In this study,
the flow rate was elevated to 1.5 mL/min with the corresponding
gradient program adjusted to 0–6.67 min: 50–100% B. Fig. 3 shows
the chromatogram of a spiked sample under optimum conditions.
Analysis time was shortened by one third without any noticeable
degradation in resolution. Besides, both system pressure and S/N
were within the acceptable range.

As can be seen in Fig. 3, the retention time of the last detected
peak was within 4 min, suggesting that the optimization of the elu-
tion time was performed successfully. In this case, an increase in
organic phase in the latter stage of the gradient elution program
was accelerated, resulting in rapid elution of difficult-to-elute
impurities and time-saving. The gradient procedure was adjusted
accordingly: 0–3 min: 50–72.5% B, 3–4 min: 72.5–100% B. The
analysis time was cut to 4 min with an adequate separation.

To improve the sample throughput, the equilibration time
between consecutive injections should be minimal. A study on
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Fig. 2. Predicted (A) and experimental (B) chromatograms of the spiked sample under optimal conditions (gradient: 50–100% ACN, tG = 10 min, T = 30 �C, flow rate: 1 mL/
min). The 12 peaks marked with numbers were those included in the optimization by DryLab.

Fig. 3. Chromatogram of the spiked sample after optimization of flow rate.

Table 1
Predicted and experimental retention times of the spiked sample under optimized separation conditions.

Peak Predicted retention time (min) Rs Experimental retention time (min) Diff.a (min) Errorb (%)

BADGE�2H2O (a) 1.08 4.86 1.21 0.13 12.30
Impurity 1 1.44 7.59 1.60 0.16 11.04
BADGE�H2OHCl (b) 2.09 2.18 2.35 0.26 12.46
BADGE�H2O (c) 2.30 5.11 2.52 0.22 9.43
Impurity 2 2.80 12.75 2.97 0.17 5.94
Impurity 3 4.15 5.43 4.20 0.05 1.25
BADGE�2HCl (d) 4.73 2.93 4.64 0.09 1.94
BADGE�HCl (e) 5.04 3.12 4.96 0.08 1.69
BADGE(f) 5.38 3.26 5.28 0.10 1.77
Impurity 4 5.74 2.47 5.67 0.07 1.25
Impurity 5 6.03 0.73 5.95 0.08 1.27
Impurity 6 6.12 6.02 0.10 1.63

a Difference = Experimental-Predicted.
b Error (%): [(Experimental-Predicted)/Predicted] � 100.
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Fig. 4. Chromatograms of the spiked sample at different acquisition rates: 5 Hz (black), 2 Hz (red) and 1 Hz (blue). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. Chromatograms of the spiked sample under different injection volumes: 10 lL (A), 5 lL (B), and 2 lL (C).
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equilibration time (0, 1, 2, 5, and 10 min) was performed. The
result showed that excellent repeatability of retention and resolu-
tion was achieved with 1 min of equilibration (data not shown),
while inefficient equilibration resulted in reduced peak shape
and resolution. As a result, the entire run took 5 min, including a
1-minute equilibration. The total runtime of HPLC-FLD in this
method is shorter than those in previous reports applying fluores-
cence and MS methods (Xiong et al., 2018; Cheng et al., 2017).

In Fig. 4, the influence of data acquisition rate (1, 2, and 5 Hz) on
the chromatogram were evaluated. For quantification purposes, at
least 20 data points are required to accurately depict a peak shape
(Snyder et al., 2010). At 1 Hz, insufficient data points resulted in



Table 2
Linear regression coefficients, LODs and LOQs of analytes.

Analyte Linear regression (R2)a LOD (ng/g) LOQ (ng/g)

BADGE 0.9995 1.03 3.43
BADGE�H2O 0.9998 1.16 3.86
BADGE�2H2O 0.9999 1.33 4.43
BADGE�HCl 1.0000 1.55 5.18
BADGE�2HCl 1.0000 1.56 5.18
BADGE�H2OHCl 1.0000 1.57 5.24

a Calibration curves were constructed with five points (n = 5) from three
replicates

Table 3
Recoveries and repeatability (RSD, %) of the six analytes at three spiked levels.

Analyte Spiked (ng/g) Recovery (%) RSD (%) a

BADGE 25 98.30 4.25
100 92.68 3.43
400 94.87 2.07

BADGE�H2O 25 93.31 5.73
100 96.74 2.27
400 93.88 3.26

BADGE�2H2O 25 96.32 6.45
100 91.65 7.02
400 94.90 4.42

BADGE�HCl 25 93.92 2.71
100 97.19 3.33
400 100.76 4.08

BADGE�2HCl 25 99.56 3.79
100 98.81 5.10
400 96.32 3.05

BADGE�H2OHCl 25 92.98 2.64
100 96.78 1.68
400 94.72 4.72

a RSD% (n = 6)
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missing peak height and loss of accuracy. On the other hand, 5 Hz
acquisition rate resulted in significantly increased noise and
degraded S/N. To ensure reasonable accuracy and S/N, a 2 Hz acqui-
sition rate was chosen.

The effect of injection volume (2, 5 and 10 lL) on the separation
was shown in Fig. 5. Larger injection volume increased sensitivity
but compromised resolution. Due to the extremely low presence
of BADGE and its derivatives in canned foods, a 10 lL injection
was selected from a sensitivity standpoint. For samples with higher
analyte presence, a smaller injection volume would be acceptable.

3.3. Method validation

3.3.1. Calibration curves and linearity
The linear regression parameters of individual compounds are

reported in Table 2. Excellent linear regression coefficients
(R2 � 0.9995) demonstrated satisfactory quantification.

3.3.2. Limit of detection and limit of quantitation
LODs and LOQs of different BADGE-related compounds were

listed in Table 2. The LODs ranged between 0.01 and 0.20 ng/g;
LOQs ranged between 0.03 and 0.66 ng/g, respectively. These val-
ues were much lower than the limit at 1000 ng/g set by the EU
Commission Regulation (EC). Moreover, these results were lower
than those by HPLC-FLD in previous studies (Sun et al., 2006;
Zhang et al., 2010).

3.3.3. Method accuracy and precision
In Table 3, quantitative recoveries were attained between

91.65% and 100.76%. The reproducibility of the analytical proce-
dure was also appropriate with RSD <7.02% for all analytes.
Table 4
Comparison of reported work with the present work.

Instrument Column type Runtime
(min)

LOD (ppb)

UPLC-MS/MS ACQUITY UPLCTM BEH C18 column 10 0.24–1.84
UPLC-MS/MS ACQUITY UPLCTM BEH C18 column 15 0.02–0.08
UPLC-MS/MS ACQUITY UPLC BEH C18 column 8 0.01–0.20
HPLC-MS Kromasil 100 C18 column 30 0.05–0.4
HPLC-MS/MS Synergy MAX-RP 8* 0.5–3.1
HPLC-MSn Fused CoreTM Ascentis Express C18 4.5* 0.15 Except

BADGE�2HCl
HPLC-DAD Synergi Hydro-RP C18 column 20 0.12–0.53
HPLC-FLD Lichrospher C18 column 50.5 0.79–3.77
HPLC-FLD ODS Hypersil C18 column 55* 0.72–1.53
HPLC-FLD Nucleosil-100 C18 column 42 4.5–7.9
Instrument Column type Runtime (min) LOD (ppb)
HPLC-FLD Ultrabase C18 column 30 0.4–0.5
HPLC-FLD Kinetex C18 column 19 20.9 for BAD

for BADGE�2
HPLC-FLD Xchrage C18 column 28 2.3 for BADG

for BADGE�2
HPLC-FLD Poroshell 120 SB-C18 column 5 0.01–0.20

* equilibrium time not included.
3.4. Comparisons with the previously reported methods

In this study, BADGE and its derivatives in canned foods were
determined and validated by HPLC-FLD. In order to highlight the
merits of this method, a performance comparison was conducted
with other reported methods. As shown in Table 4, the proposed
HPLC-FLD method provides several competitive advantages. The
entire run took only 5 min which is significantly shorter than the
earlier reports on HPLC-FLD methods that took 55 and 28 min,
respectively (Gallart-Ayala et al., 2010; Xiong et al., 2018). It is
even more rapid than UPLC-MS/MS method reported by Cheng
et al.(2017). Rapid analysis reduced toxic solvent consumption,
which contributes to an environment-friendly society. Further-
more, the proposed method holds the advantage of being cost-
effective in instrumentation, operation, and maintenance in com-
parison with UPLC-MS/MS and HPLC-MS/MS methods (Cheng
et al., 2017; Zou et al., 2012).

Noteworthily, the detection and quantitation limits of the pro-
posed method are among the best, compared with other fluores-
cence methods (Fischnaller et al., 2016; Xiong et al., 2018). It has
also proved a compelling alternative to MS/MS methods, since
the values of LOD and LOQ were similar to the previous reports
(Zhang et al., 2010).
LOQ (ppb) Cost Reference

NA High Zou et al., 2012
0.5–5 High Cheng et al., 2017
0.03–0.66 High Zhang et al., 2010
NA High Sendon and Paseiro, 2004
1.8–10.3 High Miguez et al., 2012

8
0.5 Except
BADGE�2HCl 2.5

High Gallart-Ayala et al., 2011

0.35–1.6 Low El-Kosasy et al., 2018a
2.75–10.92 Low Leepipatpiboon et al., 2005
2.40–5.10 Low Gallart-Ayala et al., 2010
13.7–24.1 Low Sun et al., 2006
LOQ (ppb) Cost Reference
1.2–1.6 Low Alabi et al., 2014

GE, and 23.0
H2O

63.3 for BADGE and 96.6
for BADGE�2H2O

Low Fischnaller et al., 2016

E, and 1.3
H2O

7.8 for BADGE and 3.8
for BADGE�2H2O

Low Xiong et al., 2018

0.03–0.66 Low This work
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4. Conclusions

An HPLC-FLD method was established for the rapid and simul-
taneous determination of BADGE and its derivatives facilitated by
a modeling software DryLab�. Impurity peaks were used through-
out the development process. This significantly reduced the matrix
effect and enhanced analytical accuracy. Under optimized condi-
tions, a satisfactory separation was achieved in 5 min using a
core–shell particle column. To our knowledge, this is for the first
time that rapid separation of BADGE and its derivatives was
achieved with HPLC-FLD, gaining efficiency and cost advantages.
In summary, the developed analytical method is applicable to
safety inspection of food contact materials involving BADGE and
its derivatives.
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