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A  strategy  for  rapid  optimization  of  liquid  chromatography  column  temperature  and  gradient  shape  is
presented.  The  optimization  as  such  is  based  on  the  well  established  retention  and  peak  width  models
implemented  in  software  like  e.g.  DryLab  and  LC  simulator.  The  novel  part of  the  strategy  is  a highly
automated  processing  algorithm  for  detection  and  tracking  of  chromatographic  peaks  in noisy  liquid
chromatography–mass  spectrometry  (LC–MS)  data.  The  strategy  is  presented  and  visualized  by the  opti-
mization  of the  separation  of  two  degradants  present  in  ultraviolet  (UV)  exposed  fluocinolone  acetonide.
It  should  be stressed,  however,  that  it can  be  utilized  for  LC–MS  analysis  of  any  sample  and  application
where  several  runs  are  conducted  on  the  same  sample.  In  the  application  presented,  30  components  that
ethod development
eak tracking

were difficult  or  impossible  to detect  in  the  UV  data  could  be automatically  detected  and  tracked  in  the
MS data  by  using  the  proposed  strategy.  The  number  of  correctly  tracked  components  was  above  95%.
Using the  parameters  from  the  reconstructed  data  sets  to  the  model  gave  good  agreement  between  pre-
dicted  and  observed  retention  times  at optimal  conditions.  The  area  of  the  smallest  tracked  component
was estimated  to  0.08%  compared  to the  main  component,  a level  relevant  for the  characterization  of

ceuti
impurities  in  the  pharma

. Introduction

The development of liquid chromatography (LC) methods for
he determination of impurities and degradation products in drug
roducts is a central task within the pharmaceutical industry. All

mpurities and degradation products present at levels above 0.1%
f the active substance must be quantified, identified and qualified.
he most commonly used techniques are LC combined with ultra-
iolet (UV)-detection for quantitative analysis and LC combined
ith mass spectrometry (MS) for identification [1].  MS  detection

s also frequently used during the development of LC–UV meth-
ds to facilitate peak tracking, i.e. identify how peaks move as the
hromatographic conditions change.

Several efforts have been made to reduce the time needed for LC
nalysis as well as the LC method development itself [2,3]. Faster

eparations can be achieved by improvements in the instrumenta-
ion such as the use of monolithic columns or systems employing
olumns packed with sub 2 �m porous or 2.7 �m superficially

∗ Corresponding author. Tel.: +46 60 148909; fax: +46 60 148820.
E-mail address: dan.bylund@miun.se (D. Bylund).

003-2670/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.aca.2011.07.047
cal  industry.
© 2011 Elsevier B.V. All rights reserved.

porous particles in combination with elevated temperature and
back pressures (600–1200 bar). A reduction of the time needed for
method development has also been achieved by the introduction of
automated column and solvent selection valves that reduces user
intervention. A number of method development strategies have
been developed to decrease the total number of trials needed to find
optimal conditions for the determination of degradation products
and/or impurities [4–13].

Optimization/prediction software has been developed that,
based on a small number of experiments, can guide the
analyst towards optimal conditions. DryLab [14,15],  LC sim-
ulator/Autochrom [16], ChromSword [10,17], Osiris [18] and
LabExpert [9] are examples on data programs that have been devel-
oped for these tasks and in some cases even take control over the
instrument and is capable to make decisions on what chromato-
graphic parameters to try next to reach optimal conditions. Many
of the optimization programs use simple but efficient relations
between variables and responses that require a minimum num-

ber of analytical runs. Similar strategies based upon experimental
design and multivariate evaluation has also been described in the
literature, for example by Moberg et al. [19–21] and Popovic et al.
[4]. Also, a combination of these approaches has been reported [6,7].

dx.doi.org/10.1016/j.aca.2011.07.047
http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:dan.bylund@miun.se
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The development part of AstraZeneca has adopted a three-step
trategy which appears to be common in the pharmaceutical indus-
ry. An initial scouting step where a suitable pH value and buffer
re selected based on the structure and pKa values of the drug sub-
tance, by prior knowledge or by screening mobile phases with
ifferent pH. The purpose with this step is to find buffers that pro-
uce a good peak shape as well as sufficient retention. A second step
omprises a generic screening of different combinations of columns
22], organic modifiers and buffers with different pH values which
as been selected to maximize selectivity differences. The purpose
ith this step is to determine which components are present in

he samples as well as to find a good starting point for the subse-
uent optimization. A third and final step is the actual optimization

n which the temperature of the column and the shape of the gra-
ient are simultaneously optimized. This optimization is based on
ell known retention time and peak width models [23], which have

een implemented in the commercial software like DryLab [14], LC
imulator/Autochrom [16], ChromSword [10] and Osiris [18].

These software and most method development strategies
equire peak tracking. In most cases a challenging and time con-
uming part of the method development process. Unfortunately,
ot much has been reported on how the time needed for peak track-

ng can be reduced. Diode array detection (DAD) is often of limited
se since impurities and degradants related to the active compo-
ent typically are present at low level where the quality of the UV
pectrum is poor. An additional complication is that related impuri-
ies tend to have a spectrum very similar to the active component.
eak tracking based on UV peak area is often not reliable due to
oor signal to noise ratio, which results in an uncertain determi-
ation. Another complication is that degradation may  change peak
reas over time [24]. MS  detection is probably the most reliable tool
or peak tracking. It is, however, often a challenge to locate chro-

atographic peaks at relevant levels in the relatively noisy LC–MS
ata matrices. Another problem is the large amount of data pro-
uced, which is quite time consuming to process manually. This

s currently considered to be one of the largest bottlenecks in the
ethod development process. Hence, there is a need for automated

rocessing methods for detection and tracking of chromatographic
eaks.

In this work such an automated processing method is described.
ts application is exemplified by the optimization of a LC–MS

ethod for the determination of two degradants present in fluoci-
olone acetonide after exposure to UV light [25,26].  The objective

s to show how our previously developed processing methods for
ignal enhancement, peak picking [27] and peak tracking [28] can
e combined to facilitate retention modelling and the optimization
f chromatographic conditions.

. Experimental

.1. Sample preparation

A solution of fluocinolone acetonide (CAS 67-73-2,
igma–Aldrich, St. Louis, MO)  was prepared at 1 mg  mL−1 in
0/50 (v/v) acetonitrile/water. This solution was then exposed to
he ambient light and temperature in a transparent glass vessel
or 24 h to accelerate degradation of the steroid. The final solution
as stored in darkness at −18 ◦C pending analysis.

.2. Chemical analysis

The LC–DAD–MS system used comprised two  Micro Series

000 LC pumps (PerkinElmer, Inc., Wellesley, MA), an autoinjector
G1367A, Agilent Technologies, Waldbronn, Germany), a Kinetex
18 column (100 mm  × 2.1 mm,  2.6 �m)  from Phenomenex, Inc.
Torrance, CA), a column oven (PerkinElmer), a DAD (G1315B,
ica Acta 704 (2011) 180– 188 181

Agilent) and an API 3000 mass spectrometer (AB Sciex, Concord,
Ontario Canada). Gradient elution at various temperatures and time
programs was  applied with mobile phase A and B at a flow rate
of 0.4 mL  min−1, where A consisted of 5% and B of 95% acetoni-
trile (HPLC gradient grade, Sigma–Aldrich) in 0.1% (v/v) aqueous
formic acid (analytical grade, Sigma–Aldrich). The injection volume
was  6 �L and the DAD was  operated within the range 210–600 nm.
Positive electrospray ionization was  applied with the mass spec-
trometer operated in full Q1 scan mode for m/z 100–950 using
default settings. The sampling frequencies for the detectors were
adjusted to 20 (DAD) and 2.47(MS) Hz, respectively. 2.47 Hz was
the highest possible scan speed obtainable with acceptable signal
on the current MS  instrument. A higher frequency should be prefer-
able for the column used, but as optimal performance is not reached
in a conventional LC system (for the current set-up, reduced plate
heights of h = 5.5 were reached under isocratic conditions, which is
about three times the optimal plate height of the column), 2.47 Hz
gave satisfactory results. The dwell volume and dead time were
determined to 0.89 mL  and 1.03 min  respectively. The sample was
stored in darkness at 5 ◦C in the auto injector during analysis to
reduce the extent of further degradation.

2.3. Data analysis

Analyst 1.3 (build 4301) was used for data acquisition, and
then the raw data was transferred to MATLAB format by use of
the wiff-to-matlab add-on. In MATLAB 7.0.4.365 (R14), peak detec-
tion and peak tracking was  performed according to the procedures
described in our previous publications [27,28]. Thereby peaks in
common for the separate runs could be identified and character-
ized by their retention times and widths. These peak lists were
then, together with the chromatographic conditions, fed into the
chromatography optimization software DryLab, where retention
models were generated from which optimal gradients and tem-
peratures for the separation task could be determined.

3. Results and discussion

The scope of this article is to demonstrate how our previ-
ously developed processing methods for signal enhancement, peak
picking [27] and peak tracking [28] can be combined to facilitate
retention modelling and the optimization of chromatographic con-
ditions, i.e. the final step in a typical method development strategy.
It should be stressed, however, that these processing methods are
equally applicable for the detection of relevant impurities in the
screening step.

3.1. The model data sets

In order to generate retention models required for optimiza-
tion, six data sets were acquired at two different temperatures, and
three different gradient slopes. Prior to processing, the data (Fig. 1)
showed a major peak in the TIC with a dominating m/z  of 454 corre-
sponding to that of protonized fluocinolone acetonide. Also clearly
visible are two  peaks eluting after the main peak which are present
at TIC areas of approximately 15 and 25%, respectively. In some of
the data sets, peaks in the order of 1% compared to the main peak
are distinguished in the TIC or BPC representations. In Fig. 1(a) and
(c), the TICs for the steepest gradient acquired at the lowest tem-
perature and for the shallowest gradient at the highest temperature
are shown.

All six data sets were subjected to the previously developed peak

detection algorithm. During this step, the chromatographic peaks
are extracted from the noise and background in each mass channel.
In the general case, not much attention is needed for the generated
reconstructed data set since the process is fully automated and the
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Fig. 1. (a) TIC of the data set sampled at 25 ◦C and steep gradient with a gradient time of 12 min  and a range from 5 to 95% ACN. (b) The gray filled peaks constitute the sum
o icted 
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f  the automatically detected and estimated component profiles of the data set dep
ll  six model data sets truncated at 4% of max  intensity. (c) TIC of the data set sam
d)  Same as in (b), but corresponding to the dataset depicted in (c). The peak area o

ost important parameters, i.e. the retention time and peak width,
re automatically estimated with sufficient accuracy by the algo-
ithm. The raw data was quite noisy as can be seen in Fig. 1(a) and
c). After applying algorithms for signal enhancement and peak
icking [27] the processed data displayed a significant improve-
ent (shown as gray filled peaks in Fig. 1(b) and (d)). The noise in

he peaks is nicely smoothed by the algorithm and mass channels
ot containing chromatographic information have been removed.

 large number of peaks were detected that were not visible in the

riginal TIC. Plotting the raw data TIC or BPC and the sum or max
ignal of the reconstructed peaks in this way gives a quick indi-
ation on how successfully the algorithm has performed. This plot

able 1
he experimental setup and algorithm results.

Column temp. Mobile phase
starting comp.
(% ACN)

Mobile phase
ending comp.
(% ACN)

Gradient time
(min)

25 5 95 12 

25 5  95 24 

25  5 95 36 

50  5 95 12 

50  5 95 24 

50  5 95 36 

Optimized conditions (two step gradient)
50 14 41 15

41 95 25 
in (a) and the solid line corresponds to the sum of the components that matches in
t 50 ◦C and shallow gradient with a gradient time of 36 min  (same range as in (a)).
mallest peaks visible in (d) corresponds to 0.08% of the main component.

showed good agreement for the current data sets and the number of
detected peaks by the algorithm are found in Table 1. As expected,
the number of detected peaks increases when the gradient slope
decreases since this facilitates a better separation for most of the
components, at least for the current samples. The algorithms alter
peak shape and peak area somewhat but if an accurate quantitative
analysis is required, the processed data can be converted back to
the corresponding m/z trace prior to integration.

The resulting reconstructed data sets, containing only the

detected peaks in the data, were then subjected to the previously
developed component tracking algorithm [28], following the line
that allows for a simultaneous matching of more than two  data

Number of
peaks

Number of
initial comp.

Number of
automatic
matched comp.

Number of
erroneous
matches

617 31 31 1
655 38 31 2
888 63 31 3
701 59 31 1
736 59 31 1
927 78 31 1

627 48 30 0
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ig. 2. (a) Raw data spectrum of fluocinolone acetonide. (b) Raw data spectrum of 

hat  were automatically peak detected and found in all six of the data sets prior to o

ets. In Table 1, the resulting number of detected peaks and initial
omponents are listed. Initial components consist of the chro-
atographic peaks and the mass spectrum that correspond to a

omponent roughly estimated initially by the component track-
ng algorithm [28]. These should preferably contain at least one
omplete component (i.e. the initial components do not need to be
ure). If this criterion cannot be fulfilled, and the number of com-
onents is over-estimated in some areas, some true components
ill be separated into two or more fractionated components in

he finalized result, usually with one much smaller than the other.
hese fractionated components are then treated individually, but
re always connected in the sense by a common retention time in
ll data sets where they are detected and tracked, and thus easily
potted by the user, and often does not critically deteriorate the
atching abilities.
The number of automatically tracked components that existed

n all data sets, extracted from the initial components by the next
rocess in the algorithm, was reported to 31. The sum of these is
hown as the solid line in Fig. 1(b) and (d). Comparing to the gray
lled peaks, in the same figures, it is clear that the major part of the
ata sets could be automatically tracked and only minor compo-
ents or part of components was unable to be tracked. The smallest
racked component that with certainty was not a fraction of a larger
omponent was 0.08%, whereas the smallest overall was 0.04% of
he main component. It is likely that these levels actually are even

ower since the signal of the main component is high enough to
each the nonlinear region where the MS  detector starts to become
aturated.
onent #21. (c) Raw data spectrum of component #28. (d–f) Corresponding spectra
ization as well as in the optimized data set.

It can be expected that the peak tracking algorithm make some
mistakes. Components with a low S/N ratio or those having many
similar neighbouring components can be difficult to evaluate, even
manually, and there are cases of inseparable or missing compo-
nents. Moreover, LC–MS can be rather unpredictable regarding S/N
levels, appearance of ghost peaks, and other artefacts between dif-
ferent data sets even though the same sample has been used.

Since only the common mass channels are stored after that the
component tracking is performed, the results can be easily visu-
alized for each component and all data sets simultaneously. Any
erroneous match is thereby easily spotted. Another approach for
finding erroneous matches at this stage is to check the linearity
between gradient slope and retention time and search for suspi-
cious behaviour. A third approach is to skip this step and assume
that most of the components are matched correctly if a model is to
be made from the matches. Verifying the model with a new analyti-
cal run will then show incorrect matches deviating in retention time
from the model at higher degree compared to the correctly matched
ones. Erroneous matches can then be detected and corrected at the
cost of some tuning of the instrument and a new analytical run.
Manual inspection of the automatic component tracking results
showed, however, that one component tracked in all data set was
a detected false positive obtained by the sudden change in mobile
phase composition in the end of the runs at m/z  112, 132 and 185
(Table 1). This false component could be easily spotted since no

change in retention at the different gradient slopes was  obtained.
Three other erroneous matches were found where either the cor-
rect components were missing (i.e. not registered by the algorithm)
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ig. 3. (a) The mobile phase gradient predicted for optimal separation of compone
f  gradient time for the gradient time of the first gradient segment (point 1 in (a)). (
he  second gradient segment (point 2 in (a)).

ecause of too low S/N levels, and/or the algorithm selected an
lternative candidate component with similar spectrum and inten-
ity. If including all types of matching errors, the automatically
roposed matches were thus 95% correct.

A peak list containing the components candidating as a possi-
le match and their measurements of similarity are available after
eak tracking [28]. This list can be of assistance for detecting some
f the obtained erroneous matches manually. In the case where
he true matching component is absent in one data set, the simi-
arity index (i.e. the combined similarity measurements) between
he erroneously listed best matching target and candidate compo-
ent will receive a low number compared to the average score. In
he case where the true component exist, but the algorithm picks

 component with similar area and spectrum, the true component,
ften the second best match, will obtain a similarity value close
o the top candidate. A top candidate with a low similarity index
core or a second best match with a near top score does, however,
ot necessary mean by default that the top candidate is erroneous,
ut can indicate that a closer manual examination is needed. Erro-
eous matches that arise from false components present in all data
ets (e.g. fast mobile phase composition shifts on bleeding columns)
an generally not be detected by merely using the peak list.

The components left behind by the algorithm that did not pass
he criterion to be regarded as a match between the data sets, i.e.

he residual components that optimally only consist of data set
pecific false positives or missing components due to no elution
uring sampling interval or low S/N levels, can also rather easily be
nalyzed. A recommended approach is to select the data set that
 and #28. (b) Critical resolution between #21, #28 and adjacent peaks as function
ical resolution between #2, #28 and adjacent peaks as function of gradient time for

generated the largest number of residual components and plot the
raw data chromatograms for those m/z ratios present in the current
component spectrum. Then repeat this process for all data sets and
simultaneously show the result in different windows. The reason
for a rejected component can then often be established. None of
the residual components had a distinctive estimated area (aver-
age = 0.3% of main component) and none could with confidence be
manually tracked between all six data sets. One  component, also
visible in the TIC in Fig. 1(c) shown as a little bump just to the
right of the main component is actually a true component having
the same spectrum as the main component. In the low tempera-
ture data sets, this component coelutes with the main component.
Consequently it is practically impossible to separate these compo-
nents without comparing differences in intensities or area. Thus
the algorithm treats the component as missing in the low temper-
ature data sets and is not included in the further considerations. If
a component is erroneously placed with the residual components,
it can, however, be fruitful to return it in the group of tracked com-
ponents prior to the following optimization since only components
registered as tracked between all data sets will be considered.

3.2. The model

The next step is to build a retention and peak width models. In

the current application this was made in DryLab, which is a well
established simulation program that has been reported to function
well in other optimizations with similar samples [4–6,8,13,14,29].
Of course, any optimization program with similar functionality can
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Table 2
The main spectral signals and suggested clusters.

Component # Main signal (m/z) [M+H−H2O]+ [M+  NH4]+ [M+  Na]+ [M+K]+ [M+ACN+H]+ [M+2Na−H]+ [2M+H]+ [2M+NH4]+ [2M+Na]+ [2M+K]+ [2M+2Na−H]+

1a 105
2 452
3–4 498c x
5 496 x
6 452 x
7 434
8 468 x x
9 440
10–11 436 x
12–13 454 x x x x x x x
14 428 x
15–16 881 x
17 490
18–19 468 x
20 434
21b 454 x x x x x x
22 434 x x x x x x x x
23 280 x x
24  253
25 376
26 288 x x
27 634d

28b 283
29 299
30a 392 x x x x

a These are not visible in Fig. 4.
b These are the optimized components.
c This is probably the mass of the [M+H−H2O]+ ion because the [M+H]+ ion (m/z 516) is absent in one of the model data sets but exists in the optimized data (manual inspection).
d This is probably the mass of the [M+2Na−H]+ ion and the [M+H]+ ion (m/z 589) is absent in one of the model data sets but exists in the optimized data (manual inspection).
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Fig. 4. (Upper) TIC of the optimized experimental data set, divided into 4 segments marked a, b, c and d. (Middle) The component profiles of the tracked components in the
different segments after processing by the component tracking algorithm and (bottom) suggested by Drylab, numbered after elution order. The solid line is the sum of all the
component profiles. Dashed lines are some selected individual component profiles. Numbers in brackets are the percentage of the relative intensity of the components with
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ntensity above the visualized range in relation to the intensity of the main compo
eight  of that component is not significantly affected by any of the other componen
he  different scales in the segment windows. Component number #21 and #28 are

e used for this purpose. DryLab requires retention times, width,
rea and the asymmetry of the chromatographic peaks in the data
ets to generate models. These values are easily available from
he reconstructed component profiles obtained from the compo-
ent tracking algorithm and can be used with decent results even
hough they do not perfectly correspond to the peaks obtained from
he raw data. For comparison, the actual data elution profiles were
stimated by fitting a function described in [30] to the raw data sig-
als corresponding to each component. In general, tailing raw data
eaks are less asymmetric in the reconstructed component profiles

n comparison with curve fitted data. In the current data set, where
any component peaks are tailing, the peak asymmetry factor at

0% height is on average 40% lower and there is not much linearity
ince the coefficient of correlation, r2, is 0.142. This also influences
he width (average 14% narrower). The area also becomes lower
hen comparing to tailing raw data components since a part of the

ail is not measured in the reconstructed component profiles, but
erhaps more important is that we do have a linear relation. In our
ase the estimated areas of the reconstructed component profiles

as 82% of the curve fitted raw data variant and r2 = 0.977. In the

urrent application, retention times are most important and the
verage retention time differed by only 0.5% when comparing the
#12). Numbers without brackets positioned above the solid line indicates that the
 numbers with brackets are positioned in time at the peak apex. Please be aware of
timized components in the data set.

reconstructed component profiles with those curve fitted to raw
data. It should be emphasized, however, that there is no evaluation
of the errors of the fitted curve to the raw data used for the com-
parison and the results is also highly dependent on the structure of
the data sets (i.e. less noisy and less tailing data sets give improved
results since both the reconstructed peak detected version and the
curve fitted representation will better imitate the actual raw data).

According to DryLab, a decent separation for all detected com-
ponents would require 98 min  at 40 ◦C. To illustrate the principle it
was  therefore decided to focus on two components and elute them
with an acceptable resolution to adjacent peaks at shortest possible
time. One of these components, #21, elutes closely after the main
component, has a high intensity and a mass spectrum that is very
similar to main component. The other selected component, #28,
elutes later and has a much lower intensity. The elution profiles of
these are marked in Fig. 1. The relative peak areas were estimated
to around 22 and 0.2% compared to the main component. The raw
data spectra of these components can be viewed in Fig. 2.

To reduce back pressure and analysis time it was decided to opti-

mize at 50 ◦C. Models were thus calculated by using data from the
three data sets obtained at 50 ◦C. Optimal conditions were defined
as shortest possible analysis time and a resolution to adjacent peaks
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f 1.5. As illustrated in Fig. 3 the models suggested that a 25 min
radient employing two linear segments (Table 1) was needed in
rder to fulfil the requirements.

.3. The optimized data set

An additional experiment was made to confirm the location of
he proposed optimal conditions. The TIC of the data set obtained
t these conditions can be viewed in Fig. 4 together with the com-
onent profiles of the tracked components and the component
rofile predicted by DryLab. All 30 valid components were cor-
ectly matched, whereas the false positive component could not
e found in the optimized data set. If reconstructing the opti-
ized data set with the modelled values, Fig. 4, it can be seen

hat the reconstructed experimental components are eluted ear-
ier compared to the calculated components. Plotting the respective
etention times demonstrate that a strong linearity is obtained
r2 = 0.997), but the experimental data elute in average 14 s ear-
ier than the predicted data. These time differences can be an effect
f an alteration of the mobile phase composition due to prolonged
ime between the model and the verifying experiments. There are
lso some differences in component width (r2 = 0.12), asymmetry
r2 = 0.18) and area (r2 = 0.998). Better peak width and asymme-
ry models are expected with data containing better peak shapes.

oreover, the time between generating the models and verifying
he optimized run was 4 weeks, consequently the drug might have
een somewhat more degraded, even though stored in darkness in

 freezer.
The obtained minimum resolution for component #21 and #28

defined as 2(tRA − tRB)/(wA + wB), where tR is retention time and
 is the base width) was 2.45 and 2.58, respectively, when using

he component profiles for the reconstructed algorithm estimation
n Fig. 4(middle) as the result. The actual resolution of the opti-

ized unprocessed data was manually calculated to 2.45 and 2.13.
hus both the processed and actual data gave better resolution
ompared to the predicted resolution (Rs ∼ 1.5). Possibly this devi-
tion could be related to a reconfiguration of the LC–MS that took
lace between the collection of the data used to build the mod-
ls and the experiment made to verify optimal conditions. Typical
eviations between predicted and actual retention time and peak
idths are <1% and <15% respectively. The use of 2.1 mm columns

nd sub 2 �m porous or 2.7 �m superficially porous particles on
onventional HPLC equipment will in most cases result in more
symmetric peaks than when using wider columns and/or larger
articles. To fully utilize such columns ultra-HPLC equipment is
eeded. This is related to a larger impact of dead volumes and extra
olumn band broadening in capillaries, fittings and detector cells
n peaks with a smaller volume. 2.1 mm  i.d. columns are needed
or MS  analysis but it is likely that broader and more symmetric
eaks could have been obtained with larger particles.

In Fig. 2(d–f), the spectra correspond to entities that were auto-
atically found in the optimized data set and also in the six datasets

sed for modelling. For component #21 and the main component
n the sample, the mass ions are plentiful and since also the inten-
ity information is utilized by the algorithm, the components can
e discriminated rather easily even though the spectrum is simi-

ar for these and also for other components in the neighbourhood.
or the much less intense component #28, only two adjacent mass
ons with the main signal corresponding to m/z 283 was  detected
n all data sets. A few numbers of mass ions makes matching more
ifficult in general, but was successful in this case. Component #28
lso had detected peak at m/z  328 (+45) in the higher column tem-

erature data sets but this signal could not be detected in the three
ata sets sampled at lower column temperatures where the inten-
ities were lower and thus this m/z are rejected by the algorithm
or this component. The reason for different intensities and areas
ica Acta 704 (2011) 180– 188 187

between the data sampled at a column oven at 25 and 50 ◦C are
probably related to on-column thermal degradation of fluocinolone
acetonide [24,31].

Implemented as a part of the peak tracking algorithms is a func-
tion for annotation of common adducts, dimers and neutral losses.
In Table 2, the main signal (i.e. the [M+H]+ ion in most cases) is
listed together with some suggested clusters that were present and
detected in all data sets. By combining the information from the
elution profiles, the corresponding mass spectra and the suggested
clusters, it could be concluded that some of the tracked compo-
nents probably are fractionated components as described earlier
in Section 3.1, and these where combined in Table 2, which then
sums up to 25 components. Noisy data containing a number of
asymmetric peaks suffer a greater risk of obtaining fractionated
components. A manual fusion of the components in question at an
earlier stage (e.g. after tracking the six model data sets) probably
could have reduced the number of fractionations when tracking the
optimized data. Many of the detected components have the maxi-
mum  signal close to the m/z of the main component, suggesting that
these really are degradation products of fluocinolone acetonide. It
is, however, possible that some have other origins, e.g. the ones
with the main signal above m/z 454. These components could be
leachables from plastic containers, elastomeric septa or equiva-
lent. None could, however, with confidence be linked to some of
the most common types of non-pharmaceutical contaminants [32].
The obtained spectrum could provide indications on what degrada-
tion products have been formed, especially when a soft ionization
technique such as ESI has been used. However, spiking with known
impurities, LC–MS/MS and/or NMR  studies are needed for a more
comprehensive structure elucidation. Structural elucidation of the
impurities and degradation pathways is a natural next step, but is
beyond the scope of the current investigation.

4. Conclusions

In this paper it has been shown how our recently developed
algorithms for highly automated data processing for detection and
tracking of chromatographic peaks in noisy LC–MS data can be
applied to facilitate LC–MS method development. The algorithms
were shown to be successful in the optimization of a separation
of components present in a challenging sample containing a large
number of components present at low level and with similar or,
in some cases identical, mass spectra impeding the possibility to
discriminate the components by their spectra alone.

Moreover, despite the relatively low signal to noise ratio and, the
in some cases, tailing peaks, the peak tracking algorithm provided
accurate results. The algorithms are fast, sensitive and accurate
enough to target impurities present at levels relevant for pharma-
ceutical products.

One important feature of the algorithms is the high degree of
automation. Typically the algorithm manages to locate relevant
components without any user intervention even for challenging
data sets such as the one presented in this paper, where analytes
are present at low level and therefore not visible at all in the TIC,
BPC or UV chromatograms.

Even though the peak tracking algorithm has primarily been
designed for localization and tracking of chromatographic peaks it
also improves the quality of the mass spectra. For each component
that has been tracked a noise reduced mass spectrum is generated
which can facilitate identification and structure elucidation.

The implementation of automated data processing for detec-

tion and peak tracking in method development strategies is, in our
opinion, likely to not only reduce the time needed for method devel-
opment but also improve the quality and reliability of the methods
produced.
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